Дайрен EVA

Дом

Дайрен EVA

  • Углубленный анализ характеристик пленок EVA, POE, EPE и PVB
    Aug 22, 2025
    Срок службы солнечных панелей во многом зависит от материалов, используемых для их герметизации. Именно поэтому исследователи уделяют много времени изучению этих материалов. Сравнительный анализ стойкости к старению четырёх основных инкапсулирующих плёнок, представленных в настоящее время на рынке: Этиленвинилацетат (ЭВА), POE, EPE и PVB. Поливинилбутиральная пленка (пленка ПВБ) демонстрирует отличную стойкость к старению, в то время как пленка EVA демонстрирует хорошие начальные характеристики, но относительно низкую стойкость к старению. 1. Четыре основных инкапсуляционных пленкиФильм EVA: Изготовленный из сополимера этилена и винилацетата, этот материал занимает лидирующие позиции на рынке инкапсуляционных материалов для фотоэлектрических модулей. Винилацетатные группы вводятся методом полимеризации под высоким давлением. Содержание винилацетата влияет на эксплуатационные характеристики пленки и обычно составляет от 28% до 33%. Технология производства пленок EVA является отработанной и относительно недорогой. В качестве инкапсуляционной пленки для фотоэлектрических модулей она обладает следующими преимуществами:Сильная адгезия к фотоэлектрическому стеклу, солнечным элементам и подложкамХорошая текучесть расплава и низкая температура плавленияВысокая светопропускаемостьОтличная гибкость, сводящая к минимуму повреждение солнечных элементов во время ламинированияОтличная устойчивость к погодным условиям Фильм POE: Статистический сополимерный эластомер, образованный из этилена и 1-октена, отличается низкой температурой плавления, узким молекулярно-массовым распределением и длинноцепочечными разветвлениями. В системе сополимера этилена и октена октеновые звенья могут быть случайным образом присоединены к этиленовой цепи, что обеспечивает превосходные механические свойства и светопропускание.Отличные влагопароизоляционные свойства: его паропроницаемость составляет примерно 1/8 от показателя ЭВА. Стабильная структура молекулярной цепи обеспечивает замедление процесса старения, обеспечивая лучшую защиту солнечных элементов от коррозии под воздействием влаги в условиях высоких температур и влажности, а также повышая устойчивость солнечных модулей к ПИ-излучению.Отличная устойчивость к атмосферным воздействиям: молекулярная цепь не содержит гидролизуемых эфирных связей, что предотвращает образование кислотных веществ в процессе старения. Коэкструдированная пленка EPE: Эта инкапсулирующая пленка была разработана для решения задач, связанных с применением пленок POE. Пленки POE склонны к осаждению присадок при ламинировании, что приводит к проскальзыванию при использовании и снижению выхода готовой продукции. Поэтому ЭВА и ПОЭ совместно экструдируются в несколько слоев для создания многослойных соэкструдированных пленок ЭВА/ПОЭ/ЭВА.Эта пленка сочетает в себе преимущества обоих материалов: она обладает водонепроницаемостью и стойкостью к ПИДА ПОЭ с высокой адгезией ЭВА.Контроль процесса представляет собой сложную задачу: полиолефиновые эластомеры представляют собой неполярные молекулы, в то время как сополимеры этилена и винилацетата – полярные. Эти две смолы существенно различаются по реакционной способности к образованию поперечных связей, вязкости расплава и скорости нагрева расплава при сдвиге, что затрудняет эффективный контроль качества в рамках простого процесса соэкструзии. Пленка ПВБ: Эта плёнка обеспечивает значительные преимущества при инкапсуляции фотоэлектрических модулей, особенно для фотоэлектрических модулей, интегрированных в здания (BIPV). Этот термопластичный полимер образуется путём кислотно-катализируемой конденсации поливинилового спирта (ПВС), получаемого путём гидролиза или алкоголиза поливинилацетата и н-бутиральдегида. Она пригодна для вторичной переработки и не требует реакции сшивания.Сильная адгезия и механические свойства: обладает сильной адгезией к стеклу и высокой механической прочностью.Превосходная стойкость к старению: обладает исключительной стойкостью к старению под воздействием окружающей среды, что делает его более прочным для использования на открытом воздухе и может прослужить до четырёх лет без потери эксплуатационных характеристик. Его адгезия к стеклу и ударопрочность превосходят показатели плёнки ЭВА, а его стойкость к старению также превосходит показатели плёнки ЭВА. 2. Устойчивость к старению – испытание на старение под воздействием УФ-излученияИспытание на ускоренное старение под воздействием УФ-излучения проверяет стойкость к старению под воздействием атмосферного света. После ламинирования подготовленные материалы помещаются в камеру для УФ-старения в контролируемых условиях. После старения измеряются прочность на отслаивание и индекс пожелтения пленки на стекле.УФ-излучение ухудшает адгезионные свойства плёнки, но эффект менее выражен, чем в условиях высокой температуры и влажности. ЭВА значительно желтеет после УФ-облучения. Изменение прочности на отрыв: УФ-облучение в некоторой степени влияет на прочность на отрыв между плёнкой и стеклом, но этот эффект менее выражен, чем в условиях высокой температуры и влажности. Различные плёнки демонстрируют различные тенденции изменения прочности на отрыв после УФ-облучения. Например, образцы 1# (ЭВА), 2# (ПОЭ), 3# (ЭПЭ) и 4#. Поливинилбутираль (ПВБ) все демонстрируют снижение прочности на отслаивание после УФ-облучения, но степень снижения различна.Изменение индекса пожелтения: ЭВА демонстрирует значительное пожелтение после УФ-облучения. Это связано с тем, что остаточные сшивающие агенты в ЭВА разлагаются под воздействием света, образуя активные свободные радикалы, которые реагируют с антиоксидантом (поглотителем УФ-излучения) с образованием хромофоров. Индекс пожелтения других плёнок также изменяется после УФ-облучения, но в меньшей степени, чем у ЭВА. 3. Стойкость к старению – испытание на старение при высоких температурах и высокой влажностиЛаминированные образцы помещали в камеру постоянной температуры и влажности при температуре (85±2)°С и относительной влажности 85%±5% на 1000 часов.Прочность отслаивания всех четырёх образцов от стекла снизилась после гигротермического старения. PVB продемонстрировал превосходную устойчивость к гигротермическому старению, в то время как EPE занял промежуточное положение между EVA и POE. EVA оказался более подвержен пожелтению в условиях высокой температуры и влажности.Изменение прочности на отрыв: прочность на отрыв образцов 1#, 2#, 3# и 4# по отношению к стеклу снизилась после гигротермического старения, и она продолжала снижаться с увеличением времени гигротермического старения.Изменение индекса пожелтения: Индекс пожелтения всех образцов увеличивался с увеличением времени гигротермической выдержки, причем наибольший рост был зафиксирован у ЭВА, что свидетельствует о том, что ЭВА более подвержен пожелтению в условиях высокой температуры и высокой влажности. 4. Устойчивость к старению – испытание на старение в условиях влажности и замораживанияЛаминированные образцы были помещены в испытательную камеру для циклического изменения температуры и влажности. Условия циклирования характеризовались определёнными колебаниями температуры и влажности, как показано на рисунке ниже. Количество циклов составило 20.Изменение прочности на отрыв: Как показано на рисунке, цикл «влажность-замораживание» практически не повлиял на прочность на отрыв между плёнками 1#, 2#, 3# и 4 и стеклом. Прочность на отрыв всех четырёх плёнок оставалась относительно стабильной в течение цикла «влажность-замораживание», без существенного снижения.Изменение индекса пожелтения: Все четыре плёнки продемонстрировали слабое пожелтение после цикла «влажность-замораживание», что свидетельствует об их высокой эффективности при частых колебаниях температуры и хорошей стойкости к пожелтению. Их оптические свойства оставались относительно стабильными в условиях высокой влажности и значительных колебаний температуры. Механические испытания показали, что лучшими свойствами обладает ПВБ, в то время как ЭВА механически прочнее ПОЭ, а ЭПЭ занимает промежуточное положение. В целом, плёнка ПВБ лучше всего противостоит старению, тогда как ЭВА сначала хорошо себя проявляет, но со временем стареет быстрее. ЭВА по-прежнему популярен благодаря своей доступной цене. По мере развития технологий ПОЭ и ЭПЭ, вероятно, будут получать всё большее распространение наряду с ЭВА, что расширит возможности герметизации солнечных панелей. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • ЭВА и поливиниловый спирт: анализ химических и физических свойств
    Feb 19, 2025
    🔬 При молярной доле винилацетата 5% механические свойства ЭВА (сополимеры этилена и винилацетата) становятся очень похожими на мягкий ПВХ. ЭВА сам по себе является гибким, что дает ему ряд преимуществ, например, недостаток, заключающийся в том, что он не допускает миграции пластификаторов, что является основной причиной постепенной замены ПВХ.     💪 Эти сополимеры имеют более высокий модуль и лучшие технологические свойства, чем типичные эластомеры, и не требуют учета вулканизации. Поливиниловый спирт может быть получен путем гидролиза поливинилацетата. Поливиниловый спирт является атактическим кубическим полимером, но не нарушает структуру решетки из-за небольших гидроксильных групп. Поэтому недостаточно гидролизованные эфирные основания снижают кристалличность и количество межмолекулярных водородных связей.   💧 Высокогидролизованный поливинилацетат (содержащий меньше негидролизованных сложноэфирных групп) имеет более высокую кристалличность. По мере увеличения степени гидролиза молекулы становятся легко кристаллизующимися. Если эти молекулы недостаточно диспергированы перед растворением, водородные связи заставят их ассоциироваться друг с другом. Чтобы достичь уровней гидролиза выше 98%, производителям необходимо работать при низкой температуре 96°C, чтобы гарантировать, что более крупные молекулы имеют достаточно тепловой энергии для растворения.   Веб-сайт: www.elephchem.com Ватсап: (+)86 13851435272 Электронная почта: admin@elephchem.com  
    ЧИТАТЬ ДАЛЕЕ
оставить сообщение

Дом

Продукты

WhatsApp

Связаться с нами