Поливиниловая спиртовая пленка

Дом

Поливиниловая спиртовая пленка

  • Research Advancements in Modified Polyvinyl Alcohol Membranes
    Sep 26, 2025
    Polyvinyl alcohol (PVA) is a popular water-loving polymer membrane material. It has great use in food packaging, pervaporation, and wastewater treatment because it is chemically stable, resists acids and bases, forms films easily, and is safe to use. Its many hydroxyl groups give it good water-loving and antifouling traits. Still, these same groups cause two main problems: it's not very strong and doesn't hold up well in water. This means it can swell or even dissolve in water, which limits where it can be used.    To address these problems, scientists have tried changing PVA membranes by mixing it with other materials, forming nanocomposites, heating it, chemically crosslinking it, or using a mix of these ways .   1. Physical Modification: Boosting Function and Strength Physical modification methods, like blending and nanocomposites, are popular because they are simple and easy to scale up for industrial production.   1.1 Blending Modification Combining things to change PVA films involves mixing materials that work well and mix well with PVA to create the films. Chitosan (CS), for instance, is often used. The best part is that it gives PVA films good germ-killing abilities, greatly stopping or even killing Escherichia coli and Staphylococcus aureus. This helps Polyvinyl alcohol film (PVA film) be used in things like hemostatic dressings. However, the addition of blending materials can sometimes weaken the original mechanical properties of the PVA film, making the balance between functionality and mechanical strength a key challenge in this approach. 1.2 Nanocomposite Modification Nanocomposite modification utilizes the unique surface-interfacial effects of nanosized fillers (such as nanosheets, nanorods, and nanotubes) to influence the internal structure of PVA films at the molecular level. Even with a small amount of filler, it can significantly improve the mechanical strength and water resistance of PVA films, while also expanding their electrical conductivity, thermal conductivity, and antimicrobial properties. Biopolymer nanomaterials: The addition of nanocellulose (CNC/CNF) and nanolignin (LNA) can improve the mechanical properties of PVA films because they are biocompatible and have good mechanical properties. It has been shown that intermolecular hydrogen bonding between these materials increases the tensile strength and flexibility of PVA films. Nanolignin, especially, does a great job at making PVA films stronger and more resistant to tearing. It also makes them better at blocking water vapor and UV light, which makes them more useful in food packaging. Carbon-based nanomaterials: Graphene, graphene oxide (GO), and carbon nanotubes (CNTs) possess exceptionally high mechanical strength and excellent electrical and thermal conductivity. GO can form multiple hydrogen bonds with PVA, enhancing both the film's mechanical strength and water resistance. For instance, adding bovine serum albumin to SiO₂ nanoparticles (creating SiO2@BSA) can more than double the tensile strength and elastic modulus of PVA films compared to using pure PVA films. Silicon-based nanomaterials: Silica nanoparticles (SiO2NPs) and montmorillonite (MMT) can effectively enhance the mechanical properties and thermal stability of PVA films. For example, SiO₂ NPs modified with bovine serum albumin (SiO2@BSA) can increase the tensile strength and elastic modulus of PVA films to more than double that of pure films. Metal and metal oxide nanoparticles: Silver nanoparticles (AgNPs) impart excellent electrical conductivity and antibacterial properties to PVA films; titanium dioxide nanoparticles (TiO2NPs) significantly enhance the photocatalytic activity of PVA films by reacting with hydroxyl groups on PVA molecular chains, showing great potential for wastewater treatment.   2. Chemical and Thermodynamic Approaches: Building a Stable Structure   2.1 Chemical Crosslinking Modification Chemical crosslinking modification utilizes the numerous hydroxyl groups on PVA side chains to react with crosslinkers (such as dibasic/polybasic acids or anhydrides) to form a stable chemical bond (ester bond) crosslinking network between polymer chains. This method can more consistently improve the mechanical properties and water resistance of PVA film, significantly reducing its solubility in water and water swelling. For example, using glutaric acid as a crosslinker can simultaneously improve the tensile strength and elongation at break of PVA film. 2.2 Heat Treatment Modification Heat treatment controls the movement of PVA molecular chains by adjusting temperature and time, optimizing the internal structure and increasing crystallinity. Annealing: Performed above the glass transition temperature, it increases the crystallinity of the PVA film, thereby enhancing its mechanical strength and water resistance. Freeze-thaw cycling: Crystal nuclei are formed at low temperatures, and thawing promotes crystal growth. The resulting microcrystals serve as physical crosslinking points for the polymer chains, significantly improving the film's mechanical strength and water resistance. After multiple cycles, the tensile strength of PVA film can reach as high as 250 MPa.     3. Synergistic Modification: Towards a High-Performance Future A single modification method often fails to fully meet the complex performance requirements of PVA film in practical applications. It's tough to boost both strength and toughness at the same time. So, a key approach is to use two nanofillers or methods that work well together. This helps create PVA films that perform well in all areas. For example, combining chemical crosslinking with nanocomposites is currently one of the most promising strategies. Research has shown that synergistic modification of PVA films using succinic acid (SuA) as a crosslinker and bacterial cellulose nanowhiskers (BCNW) as a reinforcing filler significantly improves tensile strength and water resistance, effectively offsetting the shortcomings of single modification methods.   4. Conclusion and Outlook Remarkable progress has been made in the modification of polyvinyl alcohol (PVA) films. Through the combined application of various strategies, including physical, chemical, and thermal treatments, the mechanical properties, water resistance, and multifunctionality of PVA films have been greatly enhanced. This has significantly promoted the practical application of modified PVA membranes in fields such as water treatment, food packaging, optoelectronic devices, and fuel cells. Looking forward, research on modified PVA membranes (such as Modified PVA 728F) will focus on the following aspects: Synergistic modification: Further exploring the optimal synergistic effect of chemical crosslinking and nanocomposites to resolve the conflict between permeation flux and selectivity of membrane materials and achieve synergistic optimization of multiple properties. Functional Expansion: We plan to keep working on PVA films, giving them new features like self-healing and smart responses, so they can be used in more complicated situations. By building on PVA's natural advantages and using advanced modification processes, polyvinyl alcohol films are likely to become even more widely used in the field of high-performance polymer materials.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Получение и механические свойства пленки поливинилового спирта
    Aug 14, 2025
    Поливиниловый спирт (ПВА) ПВА — широко используемый синтетический материал. Способность ПВА растворяться в воде и естественным образом разлагаться делает его хорошим выбором для производства упаковочных плёнок. Основные методы производства плёнок ПВА — нанесение покрытия из водных растворов и формование выдувом из расплава. ПВА трудно формовать под воздействием тепла, поскольку он плавится при более высокой температуре, чем разлагается. Это обусловлено прочными связями между его молекулами и кристаллической структурой. Поэтому важнейшим фактором при переработке плёнок ПВА является выбор подходящих добавок. 1. Влияние количества пластификатора на прочность на растяжение, прочность на разрыв и удлинение при разрыве Пленка поливинилспиртоваяКак показано на рисунке 1, устойчивость плёнки к разрыву снижается по мере добавления пластификатора. Это говорит о том, что пластификаторы снижают прочность плёнки. Теория пластификаторного геля объясняет, что при смешивании пластификатора со смолой он ослабляет места соединения молекул смолы. Эти связи имеют разную прочность. Пластификатор раздвигает их и нейтрализует силы, удерживающие полимер вместе. Это снижает вторичные силы между макромолекулами полимера, увеличивает гибкость макромолекулярных цепей и ускоряет процесс релаксации. Прочность на разрыв снижается по мере добавления пластификатора.С увеличением количества пластификатора плёнка становится более гибкой и растягивается сильнее, прежде чем разорваться. Это говорит о том, что пластификаторы делают плёнку более эластичной. Пластификаторы достигают этого, ослабляя притяжение между крупными молекулами полимера. Повышенная гибкость и более длительный период релаксации приводят к тому, что плёнка способна растягиваться сильнее.Данные показывают, что с увеличением количества пластификатора плёнка становится более подвержена разрыву. Вероятно, это происходит из-за того, что пластификатор снижает поверхностную энергию плёнки и уменьшает энергию, необходимую как для пластического течения, так и для длительной деформации. Эти факторы, в свою очередь, способствуют снижению сопротивления плёнки разрыву. 2. Влияние количества сшивающего агента на прочность на растяжение, удлинение при разрыве и прочность на разрыв пленки ПВСКак показано на рисунке 3, прочность пленки на разрыв постепенно возрастает с увеличением количества сшивающего агента, при этом удлинение при разрыве постепенно уменьшается. При достижении определенной точки прочность пленки на разрыв постепенно снижается, в то время как удлинение при разрыве постепенно увеличивается. Сначала, по мере добавления большего количества сшивающего агента, число рабочих полимерных цепей увеличивается, межмолекулярные силы усиливаются, и полимерные цепи становятся менее гибкими. Способность больших молекулярных цепей изменять форму и перестраиваться уменьшается, а релаксация цепей затрудняется. Таким образом, прочность на разрыв увеличивается, в то время как удлинение при разрыве уменьшается. Продолжение использования сшивающих агентов приводит к постепенному увеличению деградации и разветвления, что уменьшает количество рабочих полимерных цепей и увеличивает гибкость полимерных цепей. Способность больших молекулярных цепей изменять форму и перестраиваться увеличивается, в то время как релаксация цепей облегчается. В результате прочность на разрыв снова начинает снижаться, а удлинение при разрыве снова увеличивается.Как показано на рисунке 4, прочность плёнки на разрыв изменяется в зависимости от количества сшивающего агента. Сначала она увеличивается, но затем начинает снижаться. Это происходит потому, что при начале сшивания большее количество сшивающего агента способствует формированию полимерной сетки. Это приводит к постепенному увеличению поверхностной энергии плёнки. Затем требуется больше энергии для распространения пластического течения и необратимых вязкоупругих процессов. Благодаря этому прочность плёнки на разрыв увеличивается по мере сшивания. Однако, если сшивающего агента слишком много, полимер слишком сильно разрушился, и происходит больше реакций разветвления, прочность на разрыв ухудшается. 3. ВыводыКогда вы добавляете больше пластификатора, пленка ПВА становится менее прочным, но легче растягивается и рвется.При добавлении большего количества сшивающего агента прочность пленки и ее сопротивление разрыву сначала улучшаются, но затем ослабевают, в то время как ее способность растягиваться продолжает улучшаться. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Как поливиниловый спирт может повысить эффективность клеящих продуктов?
    Jun 18, 2024
    ПВАВодорастворимый синтетический полимер обладает превосходными адгезионными свойствами, что делает его идеальным выбором для широкого спектра применений. Одним из ключевых преимуществ ПВА является его способность образовывать прочное соединение между различными материалами, включая дерево, бумагу и ткани. Это свойство делает клей ПВА очень подходящим для работ по дереву, где требуется прочное и долговечное соединение.   Для столяров поливиниловый спирт для деревообработки открывает новые возможности. Его водорастворимая природа позволяет легко наносить и очищать, обеспечивая при этом прочное соединение между деревянными поверхностями. Будь то соединение предметов мебели, ламинирование деревянных панелей или создание сложных изделий из дерева, клеи на основе ПВА обеспечивают надежное и долговечное соединение.   В бумажной промышленности спрос на эффективные и высококачественные клеевые решения имеет решающее значение. Поливиниловый спиртовой клей для изготовления бумаги обладает превосходными эксплуатационными характеристиками, повышая эффективность и качество производственного процесса. При нанесении на бумагу клей ПВА обеспечивает повышенную прочность, стабильность размеров и пригодность для печати. Кроме того, он обеспечивает превосходную устойчивость к влаге, теплу и химикатам, повышая общую долговечность бумажной продукции.   Универсальность ПВА распространяется и на производство Поливиниловая спиртовая пленка. Эта прозрачная, гибкая пленка обладает отличными адгезионными свойствами, что делает ее незаменимым компонентом в различных отраслях промышленности. От упаковочных материалов до этикеток пленка ПВА обеспечивает надежную адгезию, сохраняя при этом целостность и внешний вид продукта.   Поливиниловый спирт, обладающий уникальными свойствами, повышает эффективность клеевых продуктов во многих сферах применения. Будь то деревообработка, производство бумаги или другие отрасли, клеи на основе ПВА обеспечивают прочное соединение, повышенную долговечность и простоту использования. Как поставщик продуктов из ПВА, мы можем предложить индивидуальные решения, отвечающие конкретным требованиям ваших клеевых применений.   Веб-сайт: www.elephchem.com WhatsApp: (+)86 13851435272 Электронная почта: admin@elephchem.com ElephChem Holding Limited, профессиональный эксперт рынка поливинилового спирта (ПВС) и эмульсии сополимера винилацетата и этилена (ВАЭ), имеющий широкое признание и превосходное производственное оборудование, соответствующее международным стандартам.  
    ЧИТАТЬ ДАЛЕЕ
  • Изучение преимуществ пленки ПВА
    Jun 18, 2023
    пленка ПВА, также известная как пленка из поливинилового спирта, представляет собой замечательный упаковочный материал на полимерной основе, который предлагает множество преимуществ для различных отраслей промышленности. Пленка ПВА нетоксична и безопасна для прямого контакта с пищевыми и фармацевтическими продуктами. Он соответствует нормативным стандартам для материалов, контактирующих с пищевыми продуктами, и не ставит под угрозу качество и безопасность упакованных товаров. Пленка ПВА также используется в специализированных промышленных целях, таких как упаковка клеев, красителей и химикатов, благодаря ее превосходной влагостойкости и барьерным свойствам.   Одним из примечательных вариантов пленки ПВА является Водорастворимая пленка ПВА.. Эта пленка специально разработана для быстрого и полного растворения в воде, что делает ее идеальным выбором для одноразовой упаковки. Водорастворимая пленка ПВА обеспечивает исключительное удобство и экологичность, особенно в таких отраслях, как упаковка пищевых продуктов, упаковка моющих средств и сельскохозяйственное применение.   В отличие от водорастворимого сорта, Нерастворимая пленка ПВА. обеспечивает превосходную устойчивость к влаге и обеспечивает надежный барьер для защиты упакованного содержимого. Этот тип пленки обычно используется в тех случаях, когда влагостойкость имеет решающее значение, например, при упаковке электронных компонентов, химической упаковке и упаковке промышленных материалов.   Специальная пленка ПВА представляет собой индивидуальные версии пленки ПВА, адаптированные к конкретным требованиям различных отраслей промышленности. Эти пленки могут обладать дополнительными функциональными возможностями, такими как повышенная прочность, повышенная прозрачность, повышенная устойчивость к разрыву или особые барьерные свойства. Специальные пленки ПВА находят применение в различных секторах, таких как фармацевтическая упаковка, косметическая упаковка и промышленное применение для извлечения мрамора из форм.   Пленка ПВА может быть изготовлена разной толщины и размера для удовлетворения различных потребностей в упаковке. Его совместимость с различными веществами позволяет использовать его с широким спектром продуктов, включая порошки, жидкости и твердые предметы. ElephChem может изготовить пленку ПВА различных размеров и характеристик в соответствии с требованиями заказчика, подходящую для различных продуктов. Веб-сайт: www.elephchem.com WhatsApp: (+)86 13851435272 Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Свойства пленок поливинилового спирта
    May 18, 2021
    Пленка из поливинилового спирта (ПВА). это своего рода функциональный материал с отличными свойствами и широким применением. Благодаря своей уникальной химической структуре и физическим свойствам он широко используется во многих областях. Ниже приводится подробное описание свойств пленок из поливинилового спирта.   1. Хорошая прозрачность: пленка ПВА имеет хорошую прозрачность, коэффициент пропускания света более 90%, поэтому она имеет широкий спектр применения в оптических приложениях, таких как поляризатор жидкокристаллического дисплея, оптический фильтр и так далее.   2. Отличные механические свойства: пленка ПВА обладает хорошей прочностью на разрыв и устойчивостью к разрыву, высокой прочностью на разрыв и удлинением при разрыве. Это свойство позволяет пленке ПВА найти важное применение в упаковочных материалах, армированных волокнах и других областях.   3. Хорошая химическая стойкость: пленка ПВА обладает хорошей коррозионной стойкостью к воде и органическим растворителям, поэтому может сохранять свои физические свойства в среде с высокой влажностью. Это делает пленку ПВА идеальным материалом для упаковки водорастворимых удобрений, консервации лекарств и других областей.   4. Растворимость: пленка из поливинилового спирта хорошо растворяется в воде и представляет собой водорастворимый полимер, который полностью растворяется. Благодаря этой характеристике пленку ПВА можно использовать в качестве водорастворимой упаковочной пленки, водорастворимого покрытия для лекарств и т. д.   5. Термическая стабильность: пленка ПВА имеет высокую температуру плавления и температуру стеклования и может сохранять хорошие физические свойства при более высоких температурах. Это позволяет применять пленки ПВА в условиях высоких температур.   6. Биосовместимость: пленка из поливинилового спирта нетоксична и безвредна для организма человека, обладает хорошей биосовместимостью и не оказывает вредного воздействия на организм человека. Это делает пленку ПВА широко используемой в медицинских приборах, искусственных органах и других областях.   Веб-сайт: www.elephchem.com WhatsApp: (+)86 13851435272 Электронная почта: admin@elephchem.com   ElephChem Holding Limited, профессиональный эксперт рынка в Поливиниловый спирт(ПВА) и Эмульсия сополимера винилацетата и этилена(VAE) с большим признанием и отличным производственным оборудованием, соответствующим международным стандартам.
    ЧИТАТЬ ДАЛЕЕ
оставить сообщение

Дом

Продукты

WhatsApp

Связаться с нами