Поливиниловый спирт (ПВА)

Дом

Поливиниловый спирт (ПВА)

  • Каким образом модифицированный ПВС улучшает эксплуатационные характеристики высокоэффективных мембранных материалов?
    Oct 11, 2025
    Технология мембранных материалов играет ключевую роль в защите окружающей среды, энергетике, биомедицине и других областях. Поливиниловый спирт (ПВА) ПВС стал ключевым объектом исследований мембранных материалов благодаря своей превосходной растворимости в воде, пленкообразующим свойствам и биосовместимости. Однако из-за высокой концентрации гидроксильных групп в молекулярных цепях ПВС легко набухает или растворяется в условиях высокой влажности, что влияет на его стабильность в сложных условиях применения. Для преодоления этих ограничений проводятся исследования Модифицированный поливиниловый спирт В последние годы это направление усилилось. Благодаря химической сшивке, смешиванию и добавлению неорганических наполнителей, водостойкость, механические свойства и химическая стабильность Пленка поливинилспиртовая (пленка ПВА) Были значительно усовершенствованы. Модифицированные ПВС-мембраны нашли широкое применение в водоподготовке, топливных элементах, газоразделении и других областях. Развитие экологичных и безопасных для окружающей среды технологий модификации открыло ПВС-мембранам ещё больший потенциал для биоразлагаемых и экологически безопасных применений. Благодаря оптимизации производственных процессов и расширению стратегий функциональной модификации, ПВС-мембраны будут играть всё более значимую роль в области высокопроизводительных мембранных материалов. 1. Методы модификации поливинилового спирта1.1 Химическое сшиваниеПоливиниловый спирт (ПВС) – высокополярный полимер. Благодаря большому количеству гидроксильных групп в основной цепи он легко образует водородные связи с молекулами воды, что приводит к набуханию и даже растворению во влажной среде. Это существенно ограничивает его стабильность в некоторых областях применения. Эффективным методом является химическая сшивка. В результате образования поперечных связей между молекулярными цепями ПВС образуется стабильная трёхмерная сеть, что снижает его растворимость в воде и повышает водостойкость и термостойкость. Сшивка обычно включает в себя образование ковалентных связей между молекулами ПВС, что делает полимерные цепи менее диспергируемыми в воде. К распространённым сшивающим агентам относятся альдегиды (например, глутаровый альдегид), эпоксиды (например, эпихлоргидрин) и поликислоты (например, лимонная кислота и малеиновый ангидрид). Различные сшивающие агенты влияют на характер сшивки и свойства модифицированного полимера. Например, при взаимодействии глутарового альдегида с гидроксильными группами ПВС в кислой среде образуется прочная сшитая структура. Кроме того, малеиновый ангидрид может связывать фрагменты ПВС посредством этерификации, что существенно повышает его водостойкость. Поскольку эти сшитые плёнки ПВС имеют более прочные связи между молекулами, они могут выдерживать больше тепла, о чём свидетельствуют их более высокие температуры стеклования (Tg) и термического разложения (Td). 1.2 Модификация смешиванияМодификация смешиванием является еще одним важным методом улучшения характеристик пленок ПВА. Смешивание с другими полимерами позволяет оптимизировать механические свойства ПВА, водостойкость и химическую стабильность. Из-за присущей ПВА гидрофильности прямое смешивание с гидрофобными полимерами может привести к проблемам совместимости. Поэтому важно выбрать подходящие материалы для смешивания и оптимизировать процесс смешивания. Например, при смешивании с поливинилбутиралем (ПВБ) гидрофобность ПВБ позволяет пленкам ПВА сохранять хорошую морфологическую стабильность даже в условиях высокой влажности. Кроме того, высокая температура стеклования ПВБ улучшает термостойкость смешанных пленок. Смешивание с поливинилиденфторидом (ПВДФ) значительно повышает гидрофобность пленок ПВА. Кроме того, превосходная химическая стойкость ПВДФ позволяет смешанным пленкам оставаться стабильными даже в сложных химических средах. ПВС также можно смешивать с полиэфирсульфоном (ПЭС) и полиакрилонитрилом (ПАН) для повышения селективной проницаемости мембраны, что делает ее более широко применимой в мембранах для разделения газов и очистки воды. 2. Применение модифицированных ПВС мембран в высокопроизводительных мембранных материалах2.1 Мембраны для очистки водыРазвитие мембранных технологий очистки воды имеет решающее значение для решения проблемы нехватки водных ресурсов и повышения качества и безопасности воды. Мембраны из ПВС отлично работают в качестве пленок и хорошо взаимодействуют с живыми тканями, поэтому их можно использовать во всех видах мембранного разделения, таких как ультрафильтрация, нанофильтрация и обратный осмос. Однако, поскольку ПВС любит воду и растворяется в ней, со временем он может разрушаться. Это делает мембрану слабее и сокращает срок ее службы. Именно поэтому замена ПВС-мембран стала одним из основных направлений исследований в области очистки воды. Химическая сшивка является ключевой технологией для повышения водостойкости ПВС-мембран. Сшивающие агенты (такие как глутаральдегид и малеиновый ангидрид) образуют стабильные химические связи между молекулярными цепями ПВС, поддерживая стабильную морфологию мембраны в водных средах и продлевая ее срок службы. Кроме того, введение неорганических наполнителей также является важным средством повышения стойкости к гидролизу и механической прочности ПВС-мембран. Добавление нано-кремнезема (SiO₂) и нано-оксида алюминия (Al₂O₃) позволяет создать прочную смесь в материале мембраны. Это повышает устойчивость мембраны к разрушению под воздействием воды и её прочность. Благодаря этому она сохраняет работоспособность даже при высоком давлении. Кроме того, смешивание ПВА с другими полимерами, такими как полиэфирсульфон (ПЭС) и поливинилиденфторид (ПВДФ), делает мембрану более водостойкой и менее склонной к загрязнению. Это означает, что она служит дольше и сохраняет свою пропускную способность даже при накоплении загрязнений. 2.2 Протонообменные мембраны для топливных элементовТопливные элементы являются чистыми и эффективными устройствами преобразования энергии, а протонообменные мембраны, как их основной компонент, определяют их производительность и срок службы. ПВС, благодаря своим превосходным пленкообразующим свойствам и технологичности, является перспективным кандидатом для протонообменных мембран. Однако его низкая протонная проводимость в сыром виде затрудняет удовлетворение требований к высокой эффективности топливных элементов, что требует модификации для повышения протонной проводимости. Модификация сульфированием является одним из ключевых методов улучшения протонной проводимости мембран ПВС. Чтобы повысить способность мембран поглощать воду и улучшить движение протонов, мы добавляем сульфоновую кислоту в цепь ПВС. Это создает непрерывные водные каналы. Смешивание также может дать результат. Если смешать ПВС с СПС и СПЭЭК, они образуют сеть, которая способствует обмену протонами и делает мембрану прочнее. Однако использование мембран ПВС в ТЭПМ имеет свои проблемы. Метанол может протекать, что приводит к напрасному расходу топлива и усугубляет ситуацию. Чтобы решить эту проблему, учёные добавили в мембраны ПВС такие компоненты, как сульфированный диоксид кремния и наночастицы диоксида циркония. Они также используют слои, блокирующие прохождение метанола через мембрану и уменьшающие утечку. 3. Тенденции и проблемы развития3.1 Разработка экологичных и безопасных для окружающей среды технологий модификацииВ связи с ужесточением экологических норм и растущим принятием концепций устойчивого развития, экологически чистые технологии модификации пленок ПВА стали ключевым направлением исследований. В последние годы исследования биоразлагаемых пленок ПВА достигли значительного прогресса. Смешивание с природными полимерами (такими как хитозан, крахмал и целлюлоза) или введение биоразлагаемых нанонаполнителей (таких как гидроксиапатит и бионаноцеллюлоза) позволяет значительно повысить биоразлагаемость пленок ПВА, что упрощает их разложение в естественной среде и снижает загрязнение экосистемы. Кроме того, для снижения воздействия токсичных химических веществ, используемых в традиционных процессах модификации сшивкой, на окружающую среду и человека, исследователи начали разрабатывать нетоксичные сшивающие агенты и более экологичные процессы модификации. К ним относятся химическая сшивка с использованием природных сшивающих агентов, таких как лимонная кислота и хитозан, а также физические методы модификации, такие как ультрафиолетовое облучение и плазменная обработка, позволяющие добиться экологически чистой сшивки. Эти технологии зеленой модификации не только повышают экологичность пленок ПВС, но и расширяют возможности их применения в упаковке пищевых продуктов, биомедицине и других областях, что делает их ключевым направлением для будущего развития полимерных мембранных материалов. 3.2 Проблемы и решения для промышленного примененияНесмотря на широкие перспективы применения модифицированных пленок ПВС в области высокопроизводительных мембранных материалов, их индустриализация по-прежнему сталкивается с многочисленными трудностями. Высокая себестоимость производства является серьёзным препятствием, особенно для пленок ПВС, содержащих нанонаполнители или специальные модификации. Дороговизна сырья и сложные процессы приготовления ограничивают крупномасштабное производство. Оптимизация процесса по-прежнему требует совершенствования. В настоящее время некоторые методы модификации характеризуются высоким энергопотреблением и длительными производственными циклами, что снижает экономическую эффективность и рентабельность промышленного производства. Для решения этих проблем в будущем усилия будут сосредоточены на разработке недорогих и эффективных процессов приготовления, таких как внедрение экологически чистых методов водного синтеза для повышения эффективности производства и оптимизация системы смешивания для повышения стабильности характеристик пленок ПВС. Кроме того, будущие направления разработки высокопроизводительных пленок ПВС будут сосредоточены на повышении долговечности, снижении энергопотребления и расширении интеллектуальных функций. Например, разработка интеллектуальных пленок ПВС, способных реагировать на внешние воздействия (например, изменения температуры и pH) для удовлетворения более широкого спектра промышленных и биомедицинских потребностей. 4. ЗаключениеПоливиниловый спирт (ПВС), как высокопроизводительный полимер, имеет широкие перспективы применения в области мембранных материалов. Пленки ПВС можно сделать прочнее и более устойчивыми к воздействию окружающей среды, используя такие методы, как химическое сшивание, совместная модификация и добавление неорганических наполнителей. Это делает их пригодными для таких областей, как очистка воды и топливные элементы. Кроме того, новые технологии зеленой модификации сделали пленки ПВС более легко разрушаемыми и менее токсичными. Это означает, что они могут найти широкое применение в области защиты окружающей среды и медицины. В будущем промышленные применения по-прежнему будут сталкиваться с проблемами производственных затрат и оптимизации технологических процессов. Для содействия широкому применению пленок ПВС в области высокопроизводительных мембранных материалов и предоставления более качественных решений в области мембранных материалов для устойчивого развития необходимо дальнейшее повышение экономической эффективности и осуществимости технологий модификации. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Приготовление модифицированных пленок ПВА-ВАЭ путем смешивания растворов
    Oct 09, 2025
    Плёнкообразующие агенты являются важными адъювантами в пестицидных покрытиях для семян и ключевыми функциональными ингредиентами в этих покрытиях. Включение плёнкообразующих агентов позволяет покрытиям формировать плёнку на поверхности семян, что отличает их от других составов, таких как сухие порошки, диспергируемые порошки, жидкости и эмульсии. Основная функция плёнкообразующего агента в покрытиях для семян — обеспечить прилипание активного ингредиента к поверхности семян и образование однородной, гладкой плёнки. Плёнкообразующие агенты должны быть водостойкими, чтобы выдерживать воздействие влажных условий, например, на рисовых полях, но также должны пропускать некоторое количество воды для прорастания семян. Также желательно, чтобы они могли впитывать немного воды из почвы, что способствует прорастанию семян в сухой почве. Большинство полимеров хорошо справляются с одной из этих задач, но не все. Например, сложно найти материал, который был бы одновременно водонепроницаемым и пропускал воду. В настоящее время в покрытиях для семян часто используется только один полимер, поэтому сложно получить все эти свойства одновременно. Это основная проблема при создании более качественных покрытий семян для рисовых полей. Поливиниловый спирт (ПВА)Благодаря своим превосходным пленкообразующим свойствам, набуханию и водопроницаемости, в настоящее время является наиболее широко используемым пленкообразующим агентом для покрытия семян. Однако его низкая водостойкость делает его подверженным водной эрозии после покрытия семян, что делает его непригодным для самостоятельного использования на рисовых полях или в районах с высокой влажностью. Эмульсия VAE (эмульсия сополимера винилацетата и этилена) обладает высокой водостойкостью, но пленки ВАЭ только набухают в воде, не растворяясь, и непроницаемы для воды. Очевидно, что ВАЭ сам по себе также не подходит для покрытия семян. Чтобы решить эти проблемы, мы использовали метод смешивания растворов для приготовления серии смешанных пленок с использованием ПВА и ВАЭ в различных соотношениях, надеясь улучшить водостойкость Поливиниловый спирт film (PVA fилм). 1. Микроскопическое наблюдение за Блеи системаНа рисунке 3-а показано, что коллоидные частицы ПВС демонстрируют выраженное мицеллярное поведение, в то время как коллоидные частицы ВАЭ имеют относительно правильную сферическую форму с размером частиц от 700 до 900 нм и нечёткими контурами (рисунок 3-б), что согласуется с литературными данными. После смешивания контуры коллоидных частиц ПВС и ВАЭ чётко демонстрируют структуру «ядро-оболочка» (рисунок 3-в), что указывает на то, что водородные связи в системе смешивания изменяют электронную плотность вокруг частиц. Более того, частицы каждой фазы равномерно распределены в системе смешивания без видимого образования границ раздела, что свидетельствует о хорошей совместимости. 2. Водостойкость и проницаемость смесиРезультаты испытаний на водопроницаемость смешанной системы приведены в Таблице 1. После добавления ПВС водопроницаемость ВАЭ значительно улучшилась. Водопроницаемость vp10, vp20, vp30 и vp40 была идеальной, отвечающей требованиям прорастания семян и в целом согласующейся с результатами испытания на прорастание семян. Когда мы посмотрели, сколько времени потребовалось для прохождения воды, мы обнаружили, что с увеличением содержания ВАЭ требовалось больше времени для начала просачивания воды: 0,2 часа (vp0), 0,25 часа (vp10), 0,5 часа (vp20), 0,75 часа (vp30), 1,2 часа (vp40), 2,5 часа (vp50) и более 6 часов (vp60-100). За исключением vp0, все группы сохраняли свои свойства в течение 24 часов без растворения, что свидетельствует о том, что добавление ВАЭ действительно повысило водостойкость материала. Национальные стандарты GB 11175-89 и GB 15330-94 проверяют водостойкость и проницаемость, проверяя степень набухания пленки. Эти испытания не могут полностью охватить водопроницаемость, эрозию и последующее растворение пленок, используемых в данном испытании. Визуальная оценка этих показателей также затруднена. Предлагаемый в данной статье «метод L-образной стеклянной трубки» измеряет водопроницаемость и водостойкость латексных пленок. В принципе, этот метод напрямую измеряет водопроницаемость, водорастворимость и водорастворимость. Для контроля показателей используются точные измерительные приборы, такие как автоматические пробоотборники и пипетки. Визуальная оценка показателей «водопроницаемости и растворения», а также измерения времени легко определяются. Экспериментальная процедура проста и может точно отражать фактические характеристики мембраны. 3. Влияние модифицированных пленок на прорастание семянИспытания на всхожесть семян риса (см. Таблицу 2) показали, что смешанные плёнки с содержанием VAE менее 30% практически не влияли на прорастание семян, поэтому они должны хорошо подходить для покрытия семян. Однако при содержании VAE более 70% семена прорастали совсем плохо. Ни один из других образцов не пророс достаточно хорошо через 7 дней, чтобы соответствовать стандарту. Структурная характеристика смесевых пленок выявила хорошую межмолекулярную совместимость между ПВС и ВАЭ после смешивания растворов. Мицеллы в растворе ПВС были открыты, и граница раздела между двумя фазами не наблюдалась, что демонстрирует возможность использования ВАЭ для модификации ПВС. Характеристики смесевых пленок ПВС/ВАЭ при массовом соотношении 80:20 и 70:30 оказались подходящими для нанесения покрытий на семена риса. По сравнению с пленками, изготовленными только из ПВС, введение ВАЭ значительно улучшило водостойкость смесевых пленок, сохранив необходимую водопроницаемость и не оказав существенного влияния на всхожесть семян. Метод модификации смесей ПВС с эмульсией ВАЭ может быть использован в качестве пленкообразующего агента для нанесения покрытий на семена пестицидов. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Достижения в области исследований модифицированных мембран из поливинилспирта
    Sep 26, 2025
    Поливиниловый спирт (ПВА) — популярный водолюбивый полимерный мембранный материал. Он широко применяется в пищевой упаковке, первапорации и очистке сточных вод, поскольку химически стабилен, устойчив к кислотам и щелочам, легко образует плёнки и безопасен в использовании. Многочисленные гидроксильные группы обеспечивают ему хорошие водолюбивые и противообрастающие свойства. Однако эти же группы создают два основных недостатка: он не очень прочный и плохо удерживает воду. Это означает, что он может набухать или даже растворяться в воде, что ограничивает область его применения. Чтобы решить эти проблемы, ученые пытались изменить мембраны ПВС, смешивая их с другими материалами, формируя нанокомпозиты, нагревая их, химически сшивая их или используя сочетание этих способов. 1. Физическая модификация: повышение функциональности и силыМетоды физической модификации, такие как смешивание и нанокомпозиты, популярны из-за своей простоты и возможности масштабирования для промышленного производства. 1.1 Модификация смешиванияКомбинирование компонентов для создания плёнок из ПВА предполагает смешивание материалов, которые хорошо работают и хорошо смешиваются с ПВА для создания плёнок. Например, часто используется хитозан (ХЗ). Его преимущество заключается в том, что он придаёт плёнкам ПВА отличные бактерицидные свойства, эффективно блокируя или даже уничтожая кишечную палочку и золотистый стафилококк. Это помогает Пленка поливинилспиртовая (пленка ПВА) Его можно использовать, например, в кровоостанавливающих повязках. Однако добавление присадочных материалов иногда может снизить исходные механические свойства поливинилацетатной пленки, что делает баланс между функциональностью и механической прочностью ключевой проблемой при таком подходе.1.2 Модификация нанокомпозитаМодификация нанокомпозитов использует уникальные поверхностно-фазные эффекты наноразмерных наполнителей (таких как нанолисты, наностержни и нанотрубки), влияющие на внутреннюю структуру пленок ПВС на молекулярном уровне. Даже небольшое количество наполнителя позволяет значительно повысить механическую прочность и водостойкость пленок ПВС, а также улучшить их электропроводность, теплопроводность и антимикробные свойства.Биополимерные наноматериалы: Добавление наноцеллюлозы (CNC/CNF) и нанолигнина (LNA) может улучшить механические свойства пленок ПВС, поскольку они биосовместимы и обладают хорошими механическими свойствами. Было показано, что межмолекулярные водородные связи между этими материалами повышают прочность на разрыв и гибкость пленок ПВС. Нанолигнин, в частности, значительно повышает прочность пленок ПВС и их устойчивость к разрыву. Он также улучшает их способность блокировать водяной пар и ультрафиолетовое излучение, что делает их более подходящими для упаковки пищевых продуктов.Наноматериалы на основе углерода: Графен, оксид графена (GO) и углеродные нанотрубки (CNT) обладают исключительно высокой механической прочностью и превосходной электро- и теплопроводностью. GO может образовывать множественные водородные связи с PVA, повышая как механическую прочность пленки, так и водостойкость. Например, добавление бычьего сывороточного альбумина к наночастицам SiO₂ (создание SiO₂@BSA) может более чем вдвое увеличить прочность на разрыв и модуль упругости пленок PVA по сравнению с использованием пленок из чистого PVA. Наноматериалы на основе кремния: наночастицы кремния (SiO₂NP) и монтмориллонит (MMT) могут эффективно улучшать механические свойства и термическую стабильность пленок PVA. Например, наночастицы SiO₂, модифицированные бычьим сывороточным альбумином (SiO₂@BSA), могут увеличить прочность на разрыв и модуль упругости пленок PVA более чем вдвое по сравнению с чистыми пленками.Наночастицы металлов и оксидов металлов: Наночастицы серебра (AgNP) придают пленкам ПВС отличную электропроводность и антибактериальные свойства; наночастицы диоксида титана (TiO2NP) значительно усиливают фотокаталитическую активность пленок ПВС, реагируя с гидроксильными группами молекулярных цепей ПВС, что демонстрирует большой потенциал для очистки сточных вод. 2. Химические и термодинамические подходы: создание стабильной структуры 2.1 Химическая сшивкаХимическая сшивка заключается в использовании многочисленных гидроксильных групп в боковых цепях поливинилового спирта для взаимодействия со сшивающими агентами (такими как двух-/многоосновные кислоты или ангидриды) с образованием устойчивой химической (эфирной) связи между полимерными цепями. Этот метод позволяет более последовательно улучшать механические свойства и водостойкость пленки поливинилового спирта, значительно снижая ее растворимость в воде и набухание в воде. Например, использование глутаровой кислоты в качестве сшивающего агента может одновременно повысить прочность на разрыв и относительное удлинение при разрыве пленки поливинилового спирта.2.2 Модификация термообработкиТермическая обработка контролирует движение молекулярных цепей ПВС путем регулирования температуры и времени, оптимизируя внутреннюю структуру и повышая кристалличность.Отжиг: Выполняемая выше температуры стеклования, она увеличивает кристалличность пленки ПВС, тем самым повышая ее механическую прочность и водостойкость.Цикл замораживания-оттаивания: При низких температурах образуются зародыши кристаллов, и размораживание способствует их росту. Образующиеся микрокристаллы служат точками физической сшивки полимерных цепей, значительно повышая механическую прочность и водостойкость пленки. После нескольких циклов прочность на разрыв пленки ПВС может достигать 250 МПа. 3. Синергетическая модификация: на пути к высокопроизводительному будущемуМетод модификации одним методом часто не в состоянии полностью удовлетворить сложные эксплуатационные требования к пленкам ПВС в практических применениях. Одновременно повысить прочность и ударную вязкость сложно. Поэтому ключевым подходом является использование двух нанонаполнителей или методов, которые хорошо работают вместе. Это позволяет создавать пленки ПВС, обладающие превосходными характеристиками во всех областях. Например, сочетание химической сшивки с нанокомпозитами в настоящее время является одной из наиболее перспективных стратегий. Исследования показали, что синергетическая модификация пленок ПВС с использованием янтарной кислоты (SuA) в качестве сшивающего агента и нановискеров бактериальной целлюлозы (BCNW) в качестве армирующего наполнителя значительно повышает прочность на разрыв и водостойкость, эффективно компенсируя недостатки методов модификации одним методом. 4. Заключение и перспективыЗначительный прогресс был достигнут в модификации пленок поливинилового спирта (ПВС). Благодаря комбинированному применению различных методов, включая физическую, химическую и термическую обработку, механические свойства, водостойкость и многофункциональность пленок ПВС значительно улучшились. Это значительно расширило практическое применение модифицированных мембран ПВС в таких областях, как водоочистка, упаковка пищевых продуктов, оптоэлектронные устройства и топливные элементы.Заглядывая вперед, исследования модифицированных ПВС-мембран (таких как Модифицированный ПВА 728Ф) сосредоточится на следующих аспектах:Синергетическая модификация: Дальнейшее изучение оптимального синергетического эффекта химической сшивки и нанокомпозитов для разрешения конфликта между потоком проницаемости и селективностью мембранных материалов и достижения синергетической оптимизации множества свойств.Функциональное расширение: Мы планируем продолжить работу над пленками PVA, придав им новые функции, такие как самовосстановление и интеллектуальные реакции, чтобы их можно было использовать в более сложных ситуациях.Благодаря использованию природных преимуществ ПВС и передовых процессов модификации пленки из поливинилспирта, вероятно, найдут еще более широкое применение в области высокопроизводительных полимерных материалов. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Каковы преимущества модифицированного поливинилового спирта по сравнению со стандартным ПВА?
    Sep 23, 2025
    Поливиниловый спирт (ПВА), водорастворимый синтетический полимер, широко используется в текстильной, бумажной промышленности, строительстве, производстве покрытий и других областях благодаря своим превосходным пленкообразующим, адгезионным, эмульгируемым и биоразлагаемым свойствам. Однако стандартный ПВС может иметь ограничения по эксплуатационным характеристикам (таким как водостойкость, гибкость и редиспергируемость) в некоторых конкретных областях применения. Чтобы преодолеть эти трудности, учёные разработали серию модифицированных ПВС, вводя различные функциональные группы или модифицируя процесс полимеризации. По сравнению со стандартным ПВС, эти модифицированный ПВА демонстрируют значительные преимущества в производительности по многим аспектам.1. Лучшая водостойкость и липкостьОбилие гидроксильных групп (-ОН) в молекулярной цепи стандартного ПВС делает его чрезвычайно гидрофильным. Однако это также означает, что он склонен к набуханию и даже растворению в условиях высокой температуры и влажности, что приводит к снижению прочности связи. Модифицированный ПВС, путём введения гидрофобных функциональных групп (таких как ацетильные и силоксановые группы) или посредством реакций сшивания (например, сшивания борной кислотой и альдегидными сшивками), может эффективно снижать набухание в воде, значительно повышая его водостойкость.Например, в сухих строительных смесях модифицированный ПВА, используемый в плиточных клеях, может образовывать более прочное и влагостойкое соединение, гарантируя, что плитка не отпадет под воздействием влаги при длительном использовании. Эти модификации также усиливают сцепление молекул ПВА, усиливая его адгезию к различным основаниям (таким как целлюлоза и неорганические порошки), тем самым придавая конечному продукту более высокую когезионную и адгезионную прочность. 2. Оптимизированная редиспергируемость и совместимостьВ некоторых областях применения, например, при производстве редиспергируемых полимерных порошков (РДП), предъявляются строгие требования к редиспергируемости полимера. Стандартный поливиниловый спирт (ПВС), используемый в качестве защитного коллоида, может легко вызывать агломерацию частиц эмульсии в процессе распылительной сушки, что влияет на конечные свойства РДП.Модифицированный ПВС, такой как частично алкоголизованный ПВС с высокой степенью полимеризации, полученный с помощью специализированных процессов полимеризации, или ПВС, содержащий специфические гидрофильные/гидрофобные сегменты, может более эффективно стабилизировать эмульсионные системы. Защитный слой, образуемый ими после высыхания, обеспечивает быструю и равномерную редиспергацию при повторном добавлении воды, даже после длительного хранения, восстанавливая исходное состояние эмульсии. Эта оптимизированная редиспергируемость критически важна для обеспечения работоспособности таких продуктов, как сухие строительные смеси и шпатлевки.Кроме того, введение определенных функциональных групп в модифицированный ПВС может улучшить его совместимость с некоторыми добавками (такими как эфиры целлюлозы и эфиры крахмала), уменьшая системные взаимодействия и флокуляцию, тем самым достигая синергетических эффектов в составе и достигая более стабильных и эффективных характеристик продукта. 3. Более широкий потенциал применения и настраиваемая производительностьВ то время как стандартный ПВС обладает относительно стабильными свойствами, возможность модификации модифицированного ПВС открывает более широкий спектр применения. Благодаря точной химической модификации ПВС можно придать ему разнообразные индивидуальные свойства, отвечающие строгим требованиям конкретных отраслей.Например, модифицированный силаном поливиниловый спирт (ПВС) может значительно улучшить адгезию и щелочестойкость в цементных материалах; модифицированный винилацетатом ПВС обеспечивает повышенную гибкость и более низкие температуры пленкообразования; а некоторые биомодифицированные ПВС могут найти новые применения в биомедицинской сфере. Эта способность к «функционализации» для удовлетворения конкретных потребностей превращает модифицированный ПВС из простого сырья в высокоэффективную добавку, способную решать конкретные технические задачи. Подводя итог, можно сказать, что хотя стандартный ПВС остаётся незаменимым во многих областях, модифицированный ПВС, обладающий значительными преимуществами в области водостойкости, адгезионной прочности, редиспергируемости и возможности адаптации, совершил прыжок от «универсального» к «специализированному» и от «пассивного» к «интеллектуальному». Независимо от того, расширяет ли он границы возможностей традиционных применений или внедряет передовые технологии, такие как биомедицина, экологическая инженерия и интеллектуальные материалы, модифицированный ПВС (например, ПВС 552) демонстрирует огромный потенциал и, несомненно, является ключевым направлением для будущего развития полимерных материалов. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Как ПВА улучшает клеи, покрытия и пленки?
    Sep 11, 2025
    В современной промышленности новые материалы повышают эффективность работы продуктов. Поливиниловый спирт (ПВА) Один из них. Это особый вид синтетического полимера, который становится всё более важным для производства клеев, покрытий и плёнок. ПВА отлично подходит для формирования плёнок, склеивания, растворения в воде и предотвращения проникновения веществ. Всё это делает продукцию более качественной и конкурентоспособной. 1. ПВА в клеях: краеугольный камень прочной адгезииПВА выделяется тем, что отлично склеивает. Его молекулярная структура содержит множество гидроксильных (-ОН) групп, которые образуют прочные водородные связи с различными субстратами, обеспечивая надёжное соединение. Как ПВА работает в клеях:Отличные адгезионные свойства: гидроксильные группы ПВА позволяют ему смачивать и прилипать к таким материалам, как бумага, дерево, ткань, кожа и некоторые виды пластика, создавая прочное соединение.Отличные пленкообразующие свойства: при высыхании раствор ПВА образует сплошную, гладкую и очень гибкую пленку. Эта пленка способствует лучшему склеиванию клея. Она также равномерно распределяет напряжение по поверхности, что снижает количество точек напряжения и повышает прочность и долговечность соединения.Отличная прочность сцепления: водородные связи между молекулярными цепями ПВС также придают адгезионному слою высокую прочность сцепления, делая сцепление менее подверженным разрыву под воздействием внешних сил.Модифицированные полимерные клеи: ПВА часто используется в качестве модификатора для полимерных клеев, таких как эмульсии поливинилацетата (ПВА). Добавление ПВА значительно увеличивает вязкость, когезионную прочность, адгезию во влажном состоянии и начальную липкость клеев на основе ПВА, а также улучшает их пленкообразующие свойства.Типичные области применения продукта:Бумага и упаковка: ПВА — ключевой компонент клея в производстве таких изделий, как картон, гофрированные коробки, конверты и клейкая лента. Его быстрое отверждение и высокая прочность склеивания отвечают требованиям высокоскоростных производственных линий.Деревообработка и мебель: В деревообрабатывающей промышленности клеи на основе ПВА пользуются популярностью благодаря отличной адгезии к древесине и относительно низкой стоимости. Текстильная промышленность: ПВА может использоваться в качестве текстильного клея для производства нетканых материалов и ламинирования одежды. 2. ПВА в покрытиях: улучшение эксплуатационных характеристик и эстетикиПВА также широко используется в покрытиях. Он служит не только пленкообразующим агентом, но и добавкой, значительно улучшающей характеристики нанесения покрытия и качество конечного покрытия.Механизмы действия ПВС в покрытиях:Улучшение адгезии: подобно клеям, ПВА помогает покрытию лучше прилипать к поверхности подложки, уменьшая отслаивание и образование пузырьков, а также повышая долговечность покрытия.Улучшение выравнивания и однородности: пленкообразующие свойства ПВА способствуют созданию гладкого и равномерного покрытия. В покрытиях для бумаги ПВА действует как носитель, способствуя равномерному распределению пигментов и оптических отбеливателей, что повышает глянец и печатные свойства бумаги.Загущение и стабилизация: В покрытиях на водной основе ПВА действует как загуститель, регулируя вязкость и облегчая нанесение. Он также действует как защитный коллоид, стабилизируя дисперсии пигментов и предотвращая их осаждение.Оптическое улучшение: В бумажных или текстильных покрытиях ПВА является отличным носителем для оптических отбеливателей. Он способствует более равномерному распределению веществ и их закреплению на поверхности, эффективно поглощая УФ-излучение и отражая голубовато-белый свет, что значительно улучшает белизну и яркость продукта.Типичные области применения продукта:Покрытие бумаги: Поливиниловый спирт CCP BP-05 (CCP BP 05), частично гидролизованная форма поливинилового спирта (ПВС), обладает как гидрофильными, так и гидрофобными свойствами, что делает его идеальным компонентом для покрытий бумаги. Он улучшает гладкость бумаги, её пригодность для печати, устойчивость к растеканию краски и прочность поверхности. BP-05 рекомендуется для покрытий бумаги, что указывает на его специфическое применение в этой области.Архитектурные покрытия: В таких строительных материалах, как цементный раствор и гипсокартон, ПВА может использоваться в качестве добавки для улучшения гибкости, прочности сцепления и трещиностойкости.Специальные покрытия: ПВА также может использоваться для создания высокоэффективных покрытий, таких как упаковочные покрытия с превосходными барьерными свойствами, или для обработки поверхности кожи, делая ее более гладкой и легкой для печати. 3. ПВА в кино: модель универсальностиПВА-плёнка очень полезна благодаря своему особому сочетанию свойств. Её можно использовать во многих областях, особенно для упаковки и предметов, которые выбрасываются после использования.Свойства пленки ПВА:Высокая барьерная способность: ПВА-пленка хорошо удерживает кислород и не пропускает запахи. Это делает ее хорошим вариантом для хранения вещей, которые легко меняются или имеют резкий запах.Растворимость в воде и биоразлагаемость: одно из преимуществ поливинилацетатной пленки — её способность растворяться в воде. Кроме того, при определённых условиях она может разлагаться, что положительно сказывается на окружающей среде. Это способствует удовлетворению растущего спроса на экологически чистые продукты. Это даёт ей уникальные преимущества при использовании в одноразовых и водорастворимых плёнках.Контролируемая растворимость в воде: контролируя степень полимеризации и гидролиза ПВС, можно точно регулировать скорость его растворения и температуру в воде в соответствии с потребностями различных областей применения.Химическая стабильность: ПВС проявляет превосходную устойчивость к маслам, смазкам и большинству органических растворителей.Типичные области применения продукта:Растворимая упаковка: Поливиниловый спирт Selvol 205 (Celvol 205), частично гидролизованный поливиниловый спирт с низкой вязкостью, находит основное применение в производстве клеев, бумаги и текстиля. Низкая вязкость делает его более эффективным в некоторых процессах производства плёнок и покрытий. Распространенное применение — производство упаковочных плёнок для таких товаров, как стиральный порошок и таблетки для мытья посуды. Можно просто положить всю упаковку в воду, и она растворится. Это упрощает работу и сокращает количество пластиковых отходов.Сельскохозяйственная пленка: пленки ПВС с контролируемым высвобождением могут использоваться для инкапсуляции пестицидов или удобрений, медленно высвобождая их при определенных условиях, что позволяет снизить загрязнение окружающей среды.Медицинское применение: биосовместимость и контролируемые свойства ПВС также открывают потенциальные возможности его применения в медицинской сфере, например, в качестве средств доставки лекарств и контактных линз. 4. Будущее ПВАПоливиниловый спирт (ПВС), обладающий уникальной химической структурой и физическими свойствами, играет важнейшую роль в трёх основных областях: производстве клеев, покрытий и плёнок. От обеспечения прочной адгезии, улучшения декоративных и защитных свойств покрытий до создания экологически чистых и удобных упаковочных решений – сфера применения ПВС постоянно расширяется. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Моделирование и оптимизация процесса восстановления мономера винилацетата
    Aug 12, 2025
    Поливиниловый спирт (ПВА) Является основным сырьем для производства винилона, а также используется в производстве клеев, эмульгаторов и других продуктов. В процессе производства ПВС полимеризация в растворе обеспечивает узкое распределение полимеризации, низкую степень разветвленности и хорошую кристалличность. Скорость полимеризации ВАМ строго контролируется и составляет около 60%. Благодаря контролю скорости полимеризации в процессе полимеризации ВАМ, около 40% Мономер винилацетата (ВАМ) Остаётся неполимеризованным и требует разделения, восстановления и повторного использования. Поэтому исследования процесса восстановления винилацетата (ВАМ) являются важнейшим компонентом процесса производства ПВС. Существует взаимосвязь между полимером и мономером. Этиленвинилацетат (ЭВА) и винилацетат мономер (ВАМ). Винилацетат мономер является одним из основных видов сырья для производства этиленвинилацетата. В данной работе для моделирования и оптимизации процесса восстановления винилацетата (ВАМ) используется программа для химического моделирования Aspen Plus. Мы изучили, как параметры процесса в первой, второй и третьей колоннах полимеризации влияют на производительность установки. Мы определили оптимальные параметры для экономии воды, используемой для экстракции, и снижения энергопотребления. Эти параметры служат важной теоретической основой для проектирования и эксплуатации процесса восстановления ВАМ. 1 Процесс восстановления мономера винилацетата1.1 Процесс моделированияЭтот процесс включает первую, вторую и третью полимеризационные башни в процессе регенерации винилацетатного мономера. Подробная технологическая схема показана на рисунке 1. 1.2 Термодинамическая модель и выбор модуляУстановка рекуперации винилацетатного мономера на заводе поливинилового спирта в первую очередь перерабатывает полярную систему, состоящую из винилацетата, метанола, воды, метилацетата, ацетона и ацетальдегида, с разделением винилацетата и воды по принципу «жидкость-жидкость». Основное оборудование установки рекуперации винилацетатного мономера на заводе поливинилового спирта было смоделировано с помощью программного обеспечения Aspen Plus. Модуль RadFrac использовался для дистилляционной колонны, а модуль Decanter – для фазового разделителя. 2 Результаты моделированияМы провели моделирование процесса на установке рекуперации винилацетатного мономера на заводе поливинилового спирта. В таблице 3 представлено сравнение результатов моделирования и фактических значений для основных логистических цепочек. Как показано в таблице 3, результаты моделирования хорошо согласуются с фактическими значениями, поэтому данную модель можно использовать для дальнейшей оптимизации параметров и технологического процесса. 3. Оптимизация параметров процесса3.1 Определение количества отпаренного метанолаВ полимеризационной башне 1 из потока, оставшегося после полимеризации, извлекается винилацетат мономер (ВАМ). Для нагрева используются пары метанола, находящиеся в нижней части колонны. Правильный расход метанола важен для эффективности работы колонны. В данном исследовании рассматривается влияние различных объемов метанола на массовую долю ПВС в нижней части колонны и массовую долю ВАМ в верхней части колонны при условии, что подача остается неизменной, а конструкция колонны неизменна. Как показано на рисунке 2, при достижении необходимой для разделения теплоёмкости в полимеризационной колонне 1 увеличение количества метанола для отпарки приводит к снижению массовой доли поливинилового спирта (ПВС) в нижней части колонны и массовой доли виниламмония (ВАМ) в верхней части колонны. Количество метанола для отпарки линейно зависит от массовой доли поливинилового спирта (ПВС) в нижней части колонны и массовой доли виниламмония (ВАМ) в верхней части колонны. 3.2 Оптимизация положения подачи в башне полимеризации 2В колонне полимеризации 2, колонне экстрактивной дистилляции, места ввода растворителя и сырья существенно влияют на качество разделения. В этой колонне используется экстрактивная дистилляция. Исходя из физических свойств экстрагента и смешанного сырья, экстрагент следует добавлять сверху колонны. На рисунке 3 показано, как место ввода смеси влияет на массовую долю метанола в верхней части колонны и нагрузку на ребойлер в нижней части колонны, при этом остальные параметры моделирования остаются неизменными. 3.3 Оптимизация количества экстрагируемой воды в полимеризационной колонне 2В полимеризационной колонне 2 экстрактивная дистилляция используется для разделения азеотропа винилацетата и метанола. Добавление воды в верхнюю часть колонны разрушает азеотроп, что позволяет разделить два вещества. Расход экстрагированной воды оказывает большое влияние на качество разделения этих веществ в полимеризационной колонне 2. При одинаковых настройках моделирования я проанализировал, как количество экстрагированной воды влияет на массовую долю метанола в верхней части и нагрузку на ребойлер в нижней части колонны. Результаты представлены на рисунке 4. 3.4 Оптимизация коэффициента орошения в полимеризационной колонне 3В полимеризационной колонне 3 флегмовое число важно для отделения винилацетата от более лёгких веществ, таких как метилацетат и следы воды. Это повышает качество винилацетата, получаемого из бокового погона. Мы поддерживали параметры моделирования постоянными и исследовали, как флегмовое число влияет как на массовую долю винилацетата в боковом погоне, так и на нагрузку на ребойлер. Результаты расчётов представлены на рисунке 6. Поддержание флегмового числа в полимеризационной колонне около 4 позволяет гарантировать соответствие винилацетата из боковой линии стандартам качества и поддерживать низкую нагрузку на ребойлер. 4. Заключение(1) С помощью программного обеспечения AspenPlus выбрана подходящая термодинамическая модель для моделирования всего процесса восстановления мономера винилацетата на заводе поливинилового спирта. Результаты моделирования хорошо согласуются с фактическими значениями и могут быть использованы для проектирования процесса и оптимизации производства на заводе.(2) На основе корректного моделирования процесса исследовано влияние технологических параметров полимеризационной башни 1, полимеризационной башни 2 и полимеризационной башни 3 на работу установки и определены оптимальные параметры процесса. Соответствие винилацетата требуемым стандартам разделения позволяет экономить воду для экстракции и снижать энергопотребление. Веб-сайт: www.elephchem.comВотсап: (+)86 13851435272Электронная почта: admin@elephchem.com
    ЧИТАТЬ ДАЛЕЕ
  • Мировая структура потребления и тенденции развития поливинилового спирта (ПВС)
    Dec 02, 2019
    В мировой структуре потребления поливинилового спирта (ПВА) ассистенты полимеризации составляют около 24 %, поливинилбутираль (ПВБ) — около 15 %, клеи — около 14 %, текстильная целлюлоза — около 14 %, бумажная масса. и покрытия составляют около 10%, а остальные 23%.   Структура потребления поливинилового спирта (ПВА) в Китае следующая: ассистенты полимеризации составляют около 38%, тканевые суспензии - около 20%, клеи - около 12%, винилоновые волокна - около 11%, суспензии для изготовления бумаги и покрытия - около 8%%, на архитектурные покрытия приходится около 5%, на остальные 6%. Средства для полимеризации, проклейка тканей и клеи являются основными потребительскими рынками поливинилового спирта.   В первой половине 2023 года спрос и предложение китайской продукции ПВС находились в слабом балансе, а цены находились на низком уровне. Преимущества китайского сорта ПВА в обеспечении стабильной доли рынка. С внедрением новых технологий, новых процессов и новых продуктов, постоянным расширением новых областей применения и постепенной заменой импортной продукции в отечественной промышленности поливинилового спирта и винилона открылись новые возможности для развития. Однако по мере того, как различные компании увеличивают свои экспортные усилия и вводят жесткую конкуренцию на нижнем уровне, а также с корректировкой промышленной структуры Китая, ростом заработной платы и других издержек, а также высокими требованиями к защите окружающей среды, некоторые перерабатывающие отрасли, такие как трудоемкая текстильная промышленность, промышленность переместилась в Юго-Восточную Азию, в результате чего темпы роста внутреннего спроса замедлились, внешнее потребление увеличилось, а экспорт увеличился. После более чем десяти лет конкурентной интеграции и оптимизации отрасль демонстрирует новую модель оптимизированных производственных мощностей, повышенной концентрации, стабильного разнообразия рынков, медленного роста рыночного спроса, высоких технических барьеров, умеренной конкуренции и инновационного развития, достигая новый баланс между спросом и предложением. Развивайтесь в новом благоприятном бизнес-формате.   В связи с быстрым развитием отраслей переработки ПВА, таких как оптическая пленка ПВА, пленка ПВБ, полимеризационные добавки, улучшение почвы, бумажные клеи, керамические клеи, защита окружающей среды, медицина и косметика, спрос на специальные продукты ПВА очень высок, и Аньхой ПВС-продукты ведущих предприятий отрасли, представленных ElephChem, быстро развиваются, и они активизировали свои исследования и разработки в области ПВС-волокна, ПВБ-смолы, ПВБ-пленки, оптической пленки ПВА, редиспергируемого резинового порошка и других продуктов. Специальные сорта ПВА и технологии производства последующих продуктов из новых материалов становятся все более зрелыми, заполняя многие пробелы в стране. На рынок постепенно выводятся новые продукты ПВА, и их доля на рынке также постоянно увеличивается. Распространенные сорта в основном достигли импортозамещения, а структура потребления отечественной промышленности ПВС еще больше расширилась.
    ЧИТАТЬ ДАЛЕЕ
  • Применение поливинилового спирта (ПВА) и использование поливинилового спирта (ПВА)
    Nov 26, 2019
    ElephChem Поливиниловый спирт (ПВА) представляет собой универсальный полимер с широким спектром применения благодаря уникальному сочетанию свойств, включая растворимость в воде, пленкообразующую способность и адгезию. Вот некоторые распространенные применения ЭлефХим Поливиниловый спирт:   1. Клеи: ЭлефХим ПВА широко используется в производстве клеев на водной основе. Обеспечивает превосходную адгезию к различным поверхностям, что делает его пригодным для деревообработки, склеивания бумаги и упаковки.   2. Бумажная промышленность: ЭлефХим ПВА используется в качестве поверхностного проклеивающего вещества в бумажной промышленности. Улучшает свойства поверхности бумаги, такие как гладкость и пригодность для печати.   3. Текстильная промышленность: В текстильной промышленности, ЭлефХим ПВА используется в качестве проклеивающего вещества для придания волокнам прочности и гибкости в процессе ткачества. Он также используется в производстве основной пряжи.   4. Эмульсионная полимеризация: ЭлефХим ПВА используется в процессах эмульсионной полимеризации для стабилизации и контроля размера частиц латексных полимеров. Служит защитным коллоидом при синтезе латексных дисперсий.   5.Упаковочные пленки: ЭлефХим ПВА используется в производстве водорастворимых упаковочных пленок. Эти пленки экологически безопасны и находят применение в однодозовой упаковке моющих средств, агрохимикатов и других продуктов.   6. Размер текстиля: ЭлефХим ПВА используется в качестве проклеивающего вещества для основной пряжи в текстильной промышленности. Он придает прочность и смазку в процессе плетения.   7.Строительная промышленность: ЭлефХим ПВА вводится в рецептуры на основе цемента в качестве модификатора цемента. Улучшает адгезию и удобоукладываемость вяжущих материалов, таких как раствор и бетон.   8. Агенты по выпуску: ЭлефХим ПВА используется в качестве антиадгезива при производстве формованных изделий, таких как резиновые и пластиковые детали. Предотвращает прилипание формованного изделия к поверхности формы.   9.Медицинские применения: ЭлефХим ПВА используется в медицинской сфере для таких применений, как производство раневых повязок на основе гидрогеля и систем контролируемой доставки лекарств.   10.Фотопленки: ЭлефХим ПВА используется в качестве защитного коллоида при производстве фотоэмульсий. Это способствует стабильности и диспергируемости кристаллов галогенида серебра.   11.Покрытия и краски: ЭлефХим ПВА используется в качестве связующего вещества в покрытиях и красках на водной основе. Улучшает образование пленки, адгезию и гибкость.   12. Водорастворимые пленки: ЭлефХим ПВА используется для производства водорастворимых пленок различного назначения, в том числе для упаковки моющих средств, красителей и агрохимикатов. Эти пленки растворяются в воде, не оставляя следов.   Эти приложения демонстрируют универсальность поливиниловый спирт в различных отраслях. Конкретный сорт и характеристики ЭлефХим ПВА может быть адаптирован к требованиям каждого применения, что делает его ценным полимером в производственном секторе.
    ЧИТАТЬ ДАЛЕЕ
  • Применение и получение поливинилового спирта
    Nov 20, 2019
    Поливиниловый спирт (ПВА) представляет собой водорастворимый полимер с высоким содержанием винила, полученный из винилацетата посредством раствора полимерного спирта. Его свойства находятся между пластмассами и резиновыми изделиями. Изделия из ПВА можно разделить на две категории: волокнистые и неволокнистые. Существует два основных пути синтеза: один — использование этилена в качестве сырья для производства винилацетата, а затем — для производства поливинилового спирта. Другой основан на ацетилене (разделенном на карбид ацетилена и газообразный ацетилен) для получения винилацетата и поливинилового спирта. В настоящее время за рубежом для производства поливинилового спирта в основном используют этиленовое сырье. но большая часть китайских производителей использует ацетиленовое сырье для производства поливинилового спирта. Поливиниловый спирт обладает более высокой вязкостью, гибкостью кожной пленки, гладкостью, устойчивостью к маслам, стойкостью к растворителям, защитой от коллоидов и газостойкостью, а также износостойкостью и водонепроницаемостью благодаря специальной обработке. Поливиниловый спирт может использоваться в текстильной и пищевой промышленности, медицине и строительстве, деревообработке, производстве бумаги, полиграфии и сельском хозяйстве.  
    ЧИТАТЬ ДАЛЕЕ
  • Способ хранения поливинилового спирта (ПВА)
    Nov 16, 2019
    ElephChem Поливиниловый спирт (ПВА) водорастворимый синтетический полимер с широким спектром применения, в том числе в качестве компонента клеев, покрытий и пленкообразователя. Правильное хранение поливинилового спирта важно для сохранения его качества и удобства использования. Вот некоторые общие рекомендации по хранению ElephChem Поливиниловый спирт (ПВА):1. Температура и влажность:Храните поливиниловый спирт в сухом прохладном месте. Воздействие высоких температур и влажности может привести к изменению физических свойств материала, например к повышенному впитыванию влаги.Избегайте хранения в местах, подверженных колебаниям температуры. 2. Герметичные контейнеры:Храните поливиниловый спирт в герметичных контейнерах, чтобы предотвратить впитывание влаги. ПВА растворим в воде, и воздействие влаги может повлиять на его характеристики.Используйте герметичные контейнеры или пакеты для защиты материала от воздействия окружающей среды.   3. Защита от света:Магазин ElephChem Поливиниловый спирт (ПВА) вдали от прямых солнечных лучей и других источников УФ-излучения. Длительное воздействие света может привести к деградации полимера. 4. Избегайте загрязнения:Держать ElephChem Поливиниловый спирт (ПВА) вдали от загрязнений, таких как пыль, грязь и химикаты, которые могут повлиять на его свойства.Используйте чистую посуду и инструменты при работе с ПВА, чтобы предотвратить загрязнение.   5. Меры предосторожности:Соблюдайте надлежащие процедуры обращения, чтобы избежать попадания примесей во время хранения и использования поливинилового спирта.При работе с материалом надевайте соответствующие средства индивидуальной защиты, такие как перчатки и защитные очки.   6.Первым пришел — первым ушел (FIFO):Следуйте системе ФИФО, чтобы гарантировать, что старые партии ElephChem Поливиниловый спирт (ПВА) используются в первую очередь. Это помогает предотвратить хранение материала в течение длительного времени, снижая риск его порчи.   7.Проверьте изменения:Периодически проверяйте хранящиеся ЭлефХим поливиниловый спирт на любые признаки обесцвечивания, комкования или изменения текстуры. При обнаружении каких-либо отклонений необходимо выяснить причину и оценить пригодность материала к использованию. Периодически проверять ЭлефХим ПВА на любые признаки обесцвечивания, комкования или изменения текстуры. При обнаружении каких-либо отклонений необходимо выяснить причину и оценить пригодность материала к использованию.Всегда обращайтесь к конкретному производителю.ЭлефХимруководства и рекомендации по хранению конкретного сорта или типа поливинилового спирта, который вы используете. Различные составы могут иметь разные требования к хранению. Правильные методы хранения способствуют долговечности и эффективности поливинилового спирта в различных областях применения.  
    ЧИТАТЬ ДАЛЕЕ
  • Обзор поливинилового спирта (ПВА)
    Nov 02, 2019
    Поливиниловый спирт (ПВА) представляет собой водорастворимый высокомолекулярный полимер, получаемый полимеризацией и гидролизом винилацетата (ВАХ). Он демонстрирует превосходную химическую стабильность и обладает такими свойствами, как хорошая изоляция, пленкообразующая способность, газонепроницаемость, растворимость в воде, адгезия, межфазная химия, стойкость к растворителям и термическая стабильность.   Продукция ElephChem ПВА можно классифицировать по разным степеням полимеризации: низкая степень полимеризации (DP < 1000), средней степени полимеризации (1000 < ДП < 2000 г.) и высокой степенью полимеризации (DP > 2000 г.).   ЭлефХим ПВА продукты также можно классифицировать по разной степени гидролиза: слабогидролизные (< 80), например ПВА 2088, частичный гидролиз (79-89), например ПВА 2488, ПВА 0588, средний гидролиз (91–98) и полный гидролиз (98–99).
    ЧИТАТЬ ДАЛЕЕ
1 2
В общей сложности 2страницы
оставить сообщение

Дом

Продукты

WhatsApp

Связаться с нами